Date: 25h March 2021

VIRTUAL COACHING CLASSES ORGANISED BY BOS (ACADEMIC), ICAI

FOUNDATION LEVEL PAPER 3: BUSINESS MATHEMATICS, LOGICAL REASONING & STATISTICS

Faculty: CA Arijit Chakraborty

© The Institute of Chartered Accountants of India

Theoretical Probability Distributions-Discussion flow :

- **Probability weightage = 3 to 4 problems in exam : v. imp**
- Theoretical distribution weightage $= 4-5$ problems in exam, v.imp
- Random variable
- Continuous & Discrete random variable
- Probability distribution
- Theoretical distribution $-$ 3 types
	- *Binomial , Poisson, Normal*
- Probability Mass Function (PMF), Probability Density Function (PDF)
- Mean, SD, Mode
- Examples, Ex 17 set A, B,C & additional qs bank

Discussion flow :

- Chap 17 : Learning Objective : Binomial & Poisson Distribution
- Binomial distribution is applicable when the trials are independent and each trial has just 2 outcomes : success and failure. 2 alternative possibilities:
- Heads or tails
- Girl or boy
- applied in: coin tossing experiments,
- sampling inspection plan,
- genetic experiments
- **profitably employed to make short term projections for the future.**

Random variables

- Often we take measurements which have different values on different occasions.
- The values are subject to random variation they are not completely predictable, and so are not deterministic. They are *random variables.*
- Examples -
- crop yield,
- maximum temperature,
- number of cyclones in a season,
- rain/no rain.

17.1 Probability distributions

- If we measure a random variable many times, we can build up a distribution of the values it can take.
- Imagine an underlying distribution of values which we would get if it was possible to take more and more measurements under the same conditions.
- This gives the probability distribution for the variable.
- A probability distribution also possesses all the characteristics of an observed distribution. : mean median, mode, standard deviation etc.

Discrete probability distributions

- \blacksquare A discrete probability distribution associates a probability with each value of a discrete random variable.
	- *Example 1. Random variable has two values Rain/No Rain. P(Rain) = 0.2, P(No Rain) = 0.8 gives a probability distribution.*
	- *Example 2. Let X = Number of sunny days in a 10 day period. P(X=0) = 0.1074, P(X=1) = 0.2684, P(X=2) = 0.3020, … P(X=6) = 0.0055, ...*
- Note that $P(\text{rain}) + P(\text{No Rain}) = 1$; $P(X=0) + P(X=1) + P(X=2) + ...$ $+P(X=6) + ... P(X=10) = 1.$
- Two important discrete probability distributions are
- (a) Binomial Distribution and (b) Poisson distribution.

Continuous probability distributions

- Because continuous random variables can take all values in a range, it is not possible to assign probabilities to individual values.
- Instead we have a continuous curve, called a probability density function, which allows us to calculate the probability a value within any interval.
- This probability is calculated as the area under the curve between the values of interest. The total area under the curve must equal 1.
- \blacksquare Continuous probability distributions = Normal Distribution

Binomial distribution $f(x) = p(X = x) = n Cx p^x q^{n-x}$ for $x = 0, 1, 2, ..., n$ **………(17.1)**

- \blacksquare = 0, otherwise
- \blacksquare **As n >0, p, q** \blacksquare **0, it follows that f(x)** \blacksquare **0 for every x** ■ **Also** $\stackrel{\circ}{a}$ **sigma** $f(x) = f(0) + f(1) + f(2) + ... + f(n) =$ **1………(17.2)**
- **Binomial distribution is known as biparametric distribution as it is characterised by two parameters n and p.**
- **This means that if the values of n and p are known, then the distribution is known completely.**
- **The mean of the binomial distribution is m (mew) = np (17.3)**
- The variance of the binomial distribution is given by
- **sigma ² = npq (17.5)**
- Since **p** and **q** are numerically less than or equal to 1,
- **npq** < **np** = variance of a binomial variable is always less **than its mean.**

■ Also variance of X attains its maximum value at p = q = 0.5 **and this maximum value is n/4.**

- **Depending on the values of the two parameters, binomial distribution may be unimodal or bi- modal. mew 0 , the mode of binomial distribution, is given by :**
- mew 0 = the largest integer contained in (n+1)p if (n+1)p is a <u>non-</u> **integer**
- **and (n+1)p – 1 if (n+1)p is an integer ….(17.4)**
- **Additive property of binomial distribution.**
- If X and Y are two independent variables such that X~B (n1, P)
- **and Y~B** (n2, P)
- **Then (X+Y) ~B (n1 + n2 , P) …… (17.6)**
- **Example 17.1:** A coin is tossed 10 times. Assuming the coin to be unbiased, what is the probability of getting
- 4 heads?
- at least 4 heads?
- at most 3 heads?
- **Solution:** We apply binomial distribution as the tossing are independent of each other. With every toss, **just two outcomes** either a head, which we call a success or a tail, **probability of a success (or failure) remains constant** throughout.
- \blacksquare Let X denotes the no. of heads. Then X follows binomial distribution with parameter n = 10 and $p = 1/2$ (since the coin is unbiased). Hence $q = 1 - p = \frac{1}{2}$
- \blacksquare The **probability mass function** of X is given by $f(x) = nCx$ $p \times q^{n-x}$
- \blacksquare = 10Cx $(1/2)^x$ $(1/2)10-x$
- $= 10Cx$ / 1024 for $x = 0, 1, 2, 10$
- \blacksquare i) probability of getting 4 heads
- $= f(4)$
- \blacksquare = 10c4 / 1024
- \blacksquare = 210 / 1024
- $= 105/512$
- **ii) probability of getting at least 4 heads**
- $= P (X \ge 4)$
- $= P (X = 4) + P (X = 5) + P (X = 6) + P(X = 7) + P (X = 8)$
- \blacksquare = 10c4 / 1024 + 10c5 / 1024 + 10c6 / 1024 + 10c7 / 1024 + 10c8 /1024
- \blacksquare = 837 / 1024
- (iii) probability of getting at most 3 heads
- $= P (X < 3)$
- \blacksquare = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)
- $= f(0) + f(1) + f(2) + f(3)$
- $= 10c0 / 1024 + 10c1 / 1024 + 10c2 / 1024 + 10c3 / 1024$
- \blacksquare 176 / 1024 = 11/64
- Example 17.2: If 15 dates are selected at random, what is the probability of getting two Sundays?
- Solution: If X denotes the number of Sundays, then it is obvious that X follows binomial distribution with parameter $n = 15$ and $p =$ probability of a Sunday in a week = $1/7$ and $q = 1 - p = 6 / 7$.
- Then $f(x) = 15cx(1/7)x$. $(6/7)15-x$, for $x = 0, 1, 2, 15$
- Hence the probability of getting two Sundays
- \blacksquare = f(2)
- \blacksquare = 15c2 $(1/7)^2$. $(6/7)^{15-2}$

■ 0.29

- **Example 17.3:** The incidence of occupational disease in an industry is such that the workmen have a 10% chance of suffering from it. What is the probability that out of 5 workmen, 3 or more will contract the disease?
- **Solution:** Let X denote the number of workmen in the sample. X follows binomial with parameters $n = 5$ and $p =$ probability that a workman suffers from the occupational disease = 0.1
- Hence $q = 1 0.1 = 0.9$.
- Thus $f(x) = PMF = 5cx$. $(0.1)x$. $(0.9)5-x$ For $x = 0, 1, 2, \ldots, 5$.
- The probability that 3 or more workmen will contract the disease
- $=$ P (x >= 3) = f (3) + f (4) + f (5)
- \blacksquare = 5c3 (0.1)3 (0.9)5-3 + 5c4 (0.1)4. (0.9) 5-4 + 5c5 (0.1)5
- $= 10 \times 0.001 \times 0.81 + 5 \times 0.0001 \times 0.9 + 1 \times 0.00001$
- $= 0.0081 + 0.00045 + 0.00001 = 0.0086$.
- **Example 17.5:** Find the binomial distribution for which mean and standard deviation are 6 and 2 respectively.
- **Solution:** Let $x \sim B$ (n, p)
- Given that mean of $x = np = 6$... (1) and SD of $x = 2$
- **b** variance of $x = npq = 4$ ….. (2)
- Dividing (2) by (1) , we get q= 2/3
- So $p = 1/3$
- Replacing p by 1/3 in equation (1), we get ρ n = 18
- Thus the probability mass function of x is given by
- \blacksquare f(x) = ncx px q n-x
- \blacksquare = 18cx (1/3)x . (2/3)18-x
- \blacksquare for $x = 0, 1, 2, \ldots, 18$
- **Example 17.9:** What is the mode of the distribution for which mean and SD are 10 and **sq root 5** respectively.
- \blacksquare **Solution:** As given $np = 10$ (1)
- \blacksquare npq = 5 (2)
- \blacksquare on solving (1) and (2), we get $n = 20$ and $p = 1/2$
- \blacksquare Hence mode = Largest integer contained in $(n+1)p$
- \blacksquare = Largest integer contained in (20+1) \times 1/2
- \blacksquare = Largest integer contained in 10.50
- $= 10$.
- **Example 17.10:** If x and y are 2 independent binomial variables with parameters 6 and 1/2 and 4 and 1/2 respectively, what is P $(x + y) = 1$?
- \blacksquare **Solution:** Let $z = x + y$.
- **■** It follows that z also follows binomial distribution with parameters (6 + 4) and $\frac{1}{2}$
- \blacksquare i.e. 10 and $\frac{1}{2}$
- $= 1 P(z < 1)$
- $= 1 P (z = 0)$
- \blacksquare = 1 10c0 (1/2)⁰ (1/2)^{10–0}
- $= 1 1 / 2^{10}$
- \blacksquare = 1023 / 1024

Poisson - Descriptive measures

Given a random variable X in an experiment, we have denoted $f(x) = P(X = x)$, *the probability that* $X = x$ *. For discrete events* $f(x) = 0$ *for all values of* x *except* $x = 0, 1, 2, \dots$.

Properties of discrete probability distribution

1. $0 \le f(x) \le 1$ 2. $\sum f(x) = 1$ 3. $\mu = \sum x. f(x)$ [is the mean] 4. $\sigma^2 = \sum (x - \mu)^2$. () *[is the variance]*

In 2, 3 and 4, *summation is extended for all possible discrete values of x. Note:* For discrete uniform distribution, $f(x) = \frac{1}{x}$ \boldsymbol{n} $with x = 1, 2, ..., n$ $\mu =$ 1 \overline{n} \sum $i=1$ \overline{n} x_i *and* $\sigma^2 = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$

 $^{\prime}$ ICAI, 2013 $^{\prime}$ CS 40003: of the control of the contr

The Poisson Distribution- example

Poisson distributions are often used to describe the number of occurrences of a 'rare' event.

There are some experiments, which involve the occurring of the number of outcomes during a given time interval (or in a region of space).

Such a process is called Poisson process.

- The main assumptions are
- **Events occur**
	- *1. at random (the occurrence of an event doesn't change the probability of it happening again)*
- 2. at a constant rate
- Poisson distributions also arise as approximations to binomials when n is large and p is small.

Definition of Poisson Distribution

■ The probability of getting **x successes in a relatively long time interval T containing k small time intervals t i.e. T = kt. is given by**

■ for
$$
x = 0, 1, 2, \quad \frac{4}{10}
$$
 (17.7) $\frac{e^{-kt} (kt)^x}{x!}$

- \blacksquare Taking kT = m, the above form is reduced to
- for x = 0, 1, 2, ¥ (17.8)

$$
e^{-m} . m^x
$$

x!

 \blacksquare A random variable X is defined to follow Poisson distribution with parameter m, to be denoted by $X \sim P(m)$ if the PMF of x is given by

Properties

- Since e -m = 1/em >0, whatever may be the value of m, m > 0, it follows that $f(x) >= 0$ for every x.
- **Also it can be established that å sigma** $f(x) = 1$
- i.e. $f(0) + f(1) + f(2) + \dots = 1$ (17.10)
- Poisson distribution is known as a uniparametric distribution as it is characterised by only one parameter m.
- **The mean of Poisson distribution is given by m i,e mew = m. (17.11)**
- **The variance of Poisson distribution is given by sigma2 = m** (17.12)
- Like binomial distribution, Poisson distribution could be also unimodal or bimodal depending upon the value of the parameter m.
- \blacksquare We have mew $0 =$ The largest integer contained in m if m is a noninteger
- \blacksquare and $m-1$ if m is an integer (17.13)
- **Poisson approximation to Binomial distribution**
- If n, the number of independent trials of a binomial distribution, tends to infinity and p, the probability of a success, tends to zero, so that
- \blacksquare m = np remains finite, then a binomial distribution with parameters n and p can be approximated by a Poisson distribution with parameter $m (= np)$.
- \blacksquare In other words when **n** is rather large and **p** is rather small so that $m =$ np is moderate then
- \blacksquare b (n, p) @ P (m) (17.14)

■ Additive property of Poisson distribution

- If X and y are two independent variables following Poisson distribution with parameters m1 and m2 respectively, then $Z = X + Y$ also follows Poisson distribution with parameter (m1 + m2).
- \blacksquare i.e. if $X \sim P$ (m1) and $Y \sim P$ (m2)
- and X and Y are independent, then
- $Z = X + Y \sim P (m1 + m2) (17.15)$

Poisson distributions – example 1

- \blacksquare Suppose that we can assume that the number of cyclones, X, in a particular area in a season has a Poisson distribution with a mean (average) of 3. Then $P(X=0) = 0.05$, $P(X=1) = 0.15$, $P(X=2) = 0.22$, $P(X=3) = 0.22$, $P(X=4) = 0.17$, $P(X=5) = 0.10$, … Note:
	- *There is no upper limit to X, unlike the binomial where the upper limit is n.*
	- *Assuming a constant rate of occurrence, the number of cyclones in 2 seasons would also have a Poisson distribution, but with mean 6.*
- **Example 17.11:** Find the mean and standard deviation of x where x is a Poisson variate satisfying the condition $P(x = 2) = P(x = 3)$.
- **Solution:** Let x be a Poisson variate with parameter m. The probability max function of x is then given by $f(x) = e^{-m}$. $mx \neq x!$
- for $x = 0, 1, 2,$ \forall
- \blacksquare now, $P(x = 2) = P(x = 3)$
- \blacksquare P f(2) = f(3)
- \blacksquare e-m .m2/ 2!= e -m .m3/3 !
- \blacksquare 1 m / 3 = 0 (as e–m > 0, m > 0)
- \blacksquare P m = 3
- Thus the mean of this distribution is $m = 3$ and standard deviation = sq root of 3= @ 1.73.
- **Example 17.12:** The probability that a random variable x following Poisson distribution would assume a positive value is $(1 - e-2.7)$. What is the mode of the distribution?
- Solution: If $x \sim P(m)$, then its probability mass function is given by
- The probability that x assumes a positive value
- $= P (x > 0)$
- $= 1 P (x £0)$
- $= 1 P(x = 0)$
- $= 1 f(0)$
- $= 1 e-m$
- **•** As given, $1 e-m = 1 e-2.7$
- \blacksquare P e-m = e-2.7, hence m = 2.7
- Thus mode mew $0 =$ largest integer contained in 2.7, = 2
- **Example 17.14:** X is a Poisson variate satisfying the following relation: $P(X = 2) =$ $9P (X = 4) + 90P (X = 6).$
- What is the standard deviation of X?
- **Solution:** Let X be a Poisson variate with parameter m. Then the probability mass function of X is
- **Thus P** $(X = 2) = 9P(X = 4) + 90P(X = 6)$
- \blacksquare P f(2) = 9 f(4) + 90 f(6)
- $=$ e–m $.m2$ (m2 + 4) (m2 1) = 0
- \blacksquare P m2 1 = 0 (as e–m > 0 m > 0 and m2 + 4 $^{\circ}$ 0)
- \blacksquare P m = 1 (as m > 0, m \lightharpoonup 1)
- Thus the standard deviation of X is sq root of $1 = 1$

■ Fitting a Poisson distribution

- Since Poisson distribution is uniparametric, we equate m, the parameter of Poisson distribution, to the arithmetic mean of the observed distribution and get the estimate of m.
- \blacksquare i.e. $m^2 = x$ bar
- The fitted Poisson distribution is then given by $f(x) = e^{-m^2}$. $(m^2) \times 1 \times 1$ For $x = 0, 1, 2, 3, \ldots$ infinity

Recap

- Types of PD
- Industry & Business applications
- Random variable
- Discrete & continuous Probability distribution
- PMF & PDF
- Features of Binomial & Poisson distribution mean, SD, mode,
- Solved examples analysis

THANK YOU

24 March 2021 **CONTAINT OF CHARTERED ACCOUNTANTS OF INDIA 31**